"Educar no es llenar un recipiente, sino encender una hoguera ..."

por amor a las matemáticas .....

por amor a las matemáticas .....
"Yo vivo de preguntar, saber No puede ser lujo" (Sylvio Rodríguez)

Guías Mates Asociadas

Para contactarte conmigo:

mail: psumates2009@gmail.com

Rivers de Ennio Morricone

Pienso en MATEMÁTICAS ..... pero NO sólo en esto

viernes, 4 de julio de 2008

Tres maneras de enfrentar una SUCESION !!!!!

Tomado de la Revista Electrónica Iberoamericana de Educación Matemática
Autor: Uldarico Malespina Jurado
Pontificia Universidad Católica del Perú

Veamos la siguiente SUCESION (Cada triangulito es equilátero de lado 1):

(Dibujo del autor en la revista)

Los números de la sucesión así planteada son:
3, 5, 8, 12, 17 .....

Veamos como, de tres formas diferentes, podemos llegar a encontrar el término general:

Primero que nada, observemos que la sucesión planteada es una progresión aritmética de segundo orden; es decir, una sucesión tal que las diferencias sucesivas
d1= f(2) – f(1), d2= f(3) – f(2), d3= f(4) – f(3), … , dn = f(n+1) - f(n), …

forman una progresión aritmética.

DATO: Este tipo de sucesiones se asocia a una función cuadrática.

1) Forma Mecánica de encontrar el término General.

Dijimos que este tipo de sucesiones se asocia a una función cuadrática.

Su término general está dado por la restricción de una función cuadrática a los números enteros positivos que forman la sucesión, para cada una de las figuras.

Así: La función cuadrática P, será de la forma Como P(1)=3, P(2)=5 y P(3)=8, haciendo los reemplazos correspondientes tenemos un sistema de tres ecuaciones lineales con las incógnitas a, b y c :

2) Usando (la historia) otras sucesiones ya aprendidas:

Recordemos los Números Triangulares y comparémoslos con la sucesión planteada:


Observe que cada término de la sucesión planteada es el correspondiente número triangular sumado con 2. Por tanto el término ene-ésimo es:

3) Encontrando la fórmula recursivamente:

No hay comentarios: