"Educar no es llenar un recipiente, sino encender una hoguera ..."

por amor a las matemáticas .....

por amor a las matemáticas .....
"Yo vivo de preguntar, saber No puede ser lujo" (Sylvio Rodríguez)

Guías Mates Asociadas

Para contactarte conmigo:

mail: psumates2009@gmail.com

Rivers de Ennio Morricone

Pienso en MATEMÁTICAS ..... pero NO sólo en esto

viernes, 15 de agosto de 2008

Descartes y su aporte a la Geometría ....



Currículum chileno:
NEM: Segundo Medio
Tema: Aporte de Descartes a la Geometría
Eje Temático: I. Algebra y Funciones.
CMO: 2. Funciones. b. Aporte de René Descartes al desarrollo de la relación entre álgebra y geometría.
o-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-o
De Wikipedia:


Se le conoce como geometría analítica al estudio de ciertos objetos geométricos mediante técnicas básicas del análisis matemático y del álgebra. Se podría decir que es el desarrollo histórico que comienza con la geometría cartesiana y concluye con la aparición de la geometría diferencial con Gauss y más tarde con el desarrollo de la geometría algebraica.

Lo novedoso de la Geometría Analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (por ejemplo 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (por ejemplo la hipérbola xy = 1 ).

Historia de la geometría analítica.
Existe una cierta controversia sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como "Geometría Analítica", apéndice al "Discurso del método", de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuvieran acceso a su obra.
El nombre de Geometría Analítica corrió parejo al de Geometría Cartesiana, siendo ambos indistinguibles. Hoy en día, paradójicamente, se prefiere denominar Geometría Cartesiana al apéndice del Discurso del método, mientras que se entiende que Geometría Analítica comprende no sólo a la Geometría Cartesiana (en el sentido que acabamos de citar, es decir, al texto apéndice del Discurso del método), sino también todo el desarrollo posterior de la Geometría que se base en la construcción de ejes coordenados y la descripción de las figuras mediante funciones —algebraicas o no—, hasta la aparición de la Geometría Diferencial de Gauss (decimos paradójicamente porque se usa precisamente el término Geometría Cartesiana para aquello que el propio Descartes bautizó como Geometría Analítica). El problema es que durante ese periodo no existe una diferencia clara entre Geometría Analítica y Análisis Matemático —esta falta de diferencia se debe precisamente a la identificación hecha en la época entre los conceptos de función y curva—, por lo que resulta a veces muy difícil intentar determinar si el estudio que se está realizando corresponde a una u otra rama.
La Geometría Diferencial de curvas sí que permite un estudio mediante un sistema de coordenadas, ya sea en el plano o en el espacio tridimensional. Pero en el estudio de las superficies, en general, aparecen serios obstáculos. Gauss salva dichos obstáculos creando la Geometría Diferencial, y marcando con ello el fin de la Geometría Analítica como disciplina. Es con el desarrollo de la geometría algebraica cuando se puede certificar totalmente la superación de la Geometría Analítica.

Es de puntualizar que la denominación de analítica dada a esta forma de estudiar la geometría provocó que la anterior manera de estudiarla (es decir, la manera axiomático-deductiva sin la intervención de coordenadas) se terminara denominando, por oposición, geometría sintética, debido a la dualidad análisis-síntesis.

Actualmente el término sólo es usado en enseñanzas medias o en carreras técnicas en las que no se realiza un estudio profundo de la Geometría.

No hay comentarios: