"Educar no es llenar un recipiente, sino encender una hoguera ..."

por amor a las matemáticas .....

por amor a las matemáticas .....
"Yo vivo de preguntar, saber No puede ser lujo" (Sylvio Rodríguez)

Guías Mates Asociadas

Para contactarte conmigo:

mail: psumates2009@gmail.com

Rivers de Ennio Morricone

Pienso en MATEMÁTICAS ..... pero NO sólo en esto

viernes, 28 de agosto de 2009

Se me enredan los nudos ....

LA TEORÍA DE NUDOS ..... (Tomado de: http://portal.educ.ar/)

Para todo el mundo antes de Euler, parecía imposible pensar en propiedades geométricas sin que la medida estuviera involucrada. Además de la banda de Moebius otro gran tema que estudia la topología es la “teoría de nudos”.

TEORÍA DE NUDOS

La técnica de tejido, que precisa cruces y anudados de hilos, se conocía desde el neolítico. Aún en épocas anteriores, existían ya métodos que permitían unir una lámina de piedra a su mango (hacha), con tripas, nervios de animales o fibras vegetales. Lamentablemente, la descomposición de todas estas ligaduras orgánicas no permitió nunca conocer con precisión la edad de los primeros nudos.

En la época actual, los marinos se han apropiado de esta técnica, esencial para su trabajo. En 1944, el pintor C.W. Ashley (1881-1947) describió y dibujó en su libro “The Ashley Book of Knots” exactamente 3.854 nudos. Los nudos están presentes en ámbitos tan dispares como la decoración, la industria textil, la magia, el alpinismo o la cirugía. Su estudio matemático permite en la actualidad ver su relación con la física, la química o la biología molecular.

Para el topólogo, un nudo es una curva continua, cerrada y sin puntos dobles. Esta curva está situada en un espacio de tres dimensiones y se admite que pueda ser deformada, estirada, comprimida, aunque está “prohibido” hacerle cortes. Cuando se puede, a través de diversas manipulaciones, se pasa de un nudo a otro y se dice que son equivalentes.

En general, es muy difícil decidir cuando dos nudos son equivalentes, y gran parte de la teoría de nudos está precisamente dedicada a intentar resolver esta cuestión.

Los nudos están catalogados teniendo en cuenta su complejidad. Una medida de la complejidad es el número de “cruce”, es decir, el número de puntos dobles en la proyección plana más simple del nudo. El nudo trivial tiene número de cruce cero. El trébol y la figura de ocho son los únicos nudos con número de cruce tres y cuatro, respectivamente.

Hay dos nudos con número de cruce cinco, tres con seis y siete con número de cruce siete. Pero el número crece radicalmente: hay 12.965 nudos con trece o menos cruces en una proyección minimal, y 1.701.935 con dieciseis o menos cruces.

Los nudos se pueden sumar, restar, multiplicar e incluso dividir. ¡¡Existe el álgebra de los nudos!! Pero cuando los nudos se complican, su simple descripción no basta para distinguirlos. Así, partiendo de su forma (la geometría del nudo), se han desarrollado fórmulas que funcionan para todos los nudos.

No hay comentarios: