"Educar no es llenar un recipiente, sino encender una hoguera ..."

por amor a las matemáticas .....

por amor a las matemáticas .....
"Yo vivo de preguntar, saber No puede ser lujo" (Sylvio Rodríguez)

Guías Mates Asociadas

Para contactarte conmigo:

mail: psumates2009@gmail.com

Rivers de Ennio Morricone

Pienso en MATEMÁTICAS ..... pero NO sólo en esto

miércoles, 27 de marzo de 2013

Algoritmo de Chudnovsky


Uno de los algoritmos más útiles de la actualidad para calcular decimales de Pi: el algoritmo de Chudnovsky.
A lo largo de la historia han sido muchas las formas utilizadas por el ser humano para calcular aproximaciones cada vez más exactas de este número Pi, cociente entre la longitud de una circunferencia cualquiera y el diámetro de la misma: se han usado las áreas de polígonos inscritos y circunscritos a una circunferencia, se han encontrado interesantes aproximaciones numéricas con algunas fracciones sencillas, se han desarrollado series infinitas y productos infinitos de todas las formas que uno pueda imaginar…Vamos, de todo. Pero de entre todos estos métodos hay varios que destacan sobre el resto, y uno de los que más lo hacen es el denominado algoritmo de Chudnovsky.

El algoritmo de Chudnovsky es un algoritmo creado por David Volfovich Chudnovsky yGregory Volfovich Chudnovsky, hermanos y matemáticos ucranianos nacionalizados estadounidenses, mediante el cual podemos obtener muy buenas aproximaciones del número Pi. Se basa en la siguiente expresión relacionada con el número Pi que encontróRamanujan:
\cfrac{1}{\pi} = \cfrac{2\sqrt{2}}{9801} \; \displaystyle{\sum^\infty_{k=0} \cfrac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}}
La expresión del algoritmo de Chudnovsky es la siguiente:
 \cfrac{1}{\pi} = 12 \; \displaystyle{\sum^\infty_{k=0} \cfrac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2}}}
y con ella obtenemos 14 decimales exactos más de Pi con cada término de la misma. ¿Qué significa esto? Muy sencillo. Vamos a partir del valor de Pi hasta su decimal número 50:
3.14159265358979323846264338327950288419716939937511
Si calculamos el primer término de esa suma, el correspondiente a k=0, la aproximación de Pi obtenida será 1 dividido entre ese resultado, que nos da lo siguiente:
\mathbf{3.1415926535897} 3420766845359157829834076223326091571
En negrita resalto la parte de ese resultado que coincide con el valor de Pi. Calculemos ahora los dos primeros términos. La aproximación de Pi ahora será 1 dividido entre la suma de los mismos. Obtenemos esto:
3.1415926535897 \mathbf{93238462643383} 58735068847586634599637
Como veis, los decimales que ya eran exactos con el primer término se mantienen con este segundo término, y añadimos 14 más (son los resaltados en negrita). Por hacer otro más, veamos que la tendencia continúa con el término siguiente. Al calcular 1 dividido entre la suma de los tres primeros términos obtenemos la siguiente aproximación de Pi:
3.141592653589793238462643383 \mathbf{27950288419716} 767885485
Los anteriores se mantienen y se añaden 14 nuevos decimales exactos. Y así sucesivamente.
Es una barbaridad obtener 14 decimales exactos más con cada término, ya que con muy poquitos términos obtenemos una aproximación escandalosamente cercana al valor real. Por eso este algoritmo es tan bueno, y por eso ha servido para obtener varios récords mundiales de cálculo de decimales del número Pi (por ejemplo, para éste de 5 billones de agosto de 2010 y para éste de 10 billones de octubre de 2011). Por eso es uno de los más utilizados en la actualidad para el cálculo de buenas (más bien buenísimas) aproximaciones de esta constante que tanto nos gusta.

Fuente: http://gaussianos.com/el-algoritmo-de-chudnovsky-o-como-se-calculan-los-decimales-de-pi-en-el-siglo-xxi/

No hay comentarios: