"Educar no es llenar un recipiente, sino encender una hoguera ..."

por amor a las matemáticas .....

por amor a las matemáticas .....
"Yo vivo de preguntar, saber No puede ser lujo" (Sylvio Rodríguez)

Guías Mates Asociadas

Para contactarte conmigo:

mail: psumates2009@gmail.com

Rivers de Ennio Morricone

Pienso en MATEMÁTICAS ..... pero NO sólo en esto

martes, 26 de julio de 2011

¿ Para qué sirven las matemáticas ? Excelente Artículo en WordPress !!!!

http://francisthemulenews.wordpress.com/2011/07/13/para-que-sirven-las-matematicas/

Un ejemplo:

Mark McCartney & Tony Mann: “De los cuaterniones a Lara Croft”

La historia de cómo descubrió los cuaterniones el matemático irlandés William Rowan Hamilton (1805–1865) el 16 de octubre 1843 mientras estaba caminando sobre el Puente de “Broome” en Dublín es muy conocida. Hamilton había estado buscando una manera de extender el sistema de números complejos a tres dimensiones de tal forma que permitiera describir las rotaciones tridimensionales respecto a un eje arbitrario como los números complejos describen las rotaciones bidimensionales. Su idea feliz ahora nos resulta casi obvia, no era posible hacerlo con ternas de números, las rotaciones tridimensionales requieren un sistema de números con cuatro componentes imaginarias. Si los números complejos son de la forma a + i b, donde a y b son números reales, e i es la raíz cuadrada de –1, entonces los cuaterniones deben tener la forma a + b i+ c j + d k , donde las unidades imaginarias cumplen i 2 = j 2 = k 2 = ijk= –1.

Hamilton pasó el resto de su vida tratando de convencer a toda la comunidad de matemáticos de que los cuaterniones eran una solución elegante a múltiples problemas en geometría, mecánica y óptica. Tras su muerte, pasó el testigo a Peter Guthrie Tait (1831–1901), profesor de la Universidad de Edimburgo. William Thomson (Lord Kelvin) pasó más de 38 años discutiendo con Tait sobre la utilidad real de los cuaterniones. Kelvin prefería el cálculo vectorial, que a finales del siglo XIX eclipsó a los cuaterniones y los matemáticos del siglo XX, en general, consideran los cuaterniones como una hermosa construcción matemática sin ninguna utilidad práctica. Así fue hasta que por sorpresa, en 1985, el informático Ken Shoemake presentó la idea de interpolar rotaciones usando cuaterniones en el congreso de gráficos por computador más importante del mundo (el ACM SIGGRAPH). Interpolar matrices preservando la ortogonalidad de las matrices de rotación es muy engorroso y utilizar los ángulos de Euler ayuda poco. Las técnicas convencionales de interpolación para númeos reales se extienden de forma natural a los números complejos y a los cuaterniones. Interpolaciones suaves y rápidas de calcular que desde entonces se utilizan en todos los juegos por ordenador que presentan gráficos tridimensionales. En la actualidad, los cuaterniones son imprescindibles en robótica y en visión por ordenador, además de en gráficos por ordenador. Al final del s. XX, la guerra entre Kelvin y Tait fue ganada por este último. Hamilton vio cumplido su sueño en la industria de los videojuegos, 150 después de su descubrimiento, una industria que mueve más dinero en el mundo que la industria del cine (más de 100 mil millones de dólares en 2010).





No hay comentarios: