martes, 21 de septiembre de 2010

Desafío - Números

Respuesta:

Este ejercicio lo hice exhaustivamente. Es decir, pensé en extenso, la lista de números divisores cuando "n" va tomando los valores: 1, 2, 3, 4, etc.

Veamos n = 1, entonces M = (3)(3)x10 = 90
Los divisores de 90 son:
1 ; 2 ; 3 ; 5 ; 6 ; 9; 10 ; 15 ; 18 ; 30 ; 45 ; 90 : es decir son 12 los divisores.

Veamos n=2, entonces M = (3)(3)x(10)(10) = 900
Los divisores de 900 son los 12 anteriores, más otros nuevos divisores:
Anteriores divisores: 1 ; 2 ; 3 ; 5 ; 6 ; 9; 10 ; 15 ; 18 ; 30 ; 45 ; 90
Nuevos divisores: 20 ; 25 ; 50 ; 60 ; 75 ; 100 ; 150 ; 180 ; 225 ; 300 ; 450 ; 900
Es decir, en total son: 12 + 12 = 24 divisores.

Veamos n=3, entonces M = (3)(3)x(10)(10)(10) = 9.000
Los divisores de 9.000 son los 24 anteriores divisores, más otros nuevos divisores:
Anteriores divisores:
1 ; 2 ; 3 ; 5 ; 6 ; 9; 10 ; 15 ; 18 ; 30 ; 45 ; 90
20 ; 25 ; 50 ; 60 ; 75 ; 100 ; 150 ; 180 ; 225 ; 300 ; 450 ; 900
Nuevos divisores:
200; 250 ; 500 ; 600 ; 750 ; 1.000 ; 1.500 ; 1.800 ; 2.250 ; 3.000 ; 4.500 ; 9.000
Es decir, son en total: 12 + 12 + 12 = 36 divisores.

OJO: que se levanta una especie de Ley de Formación,
n=1 implica 12 divisores,
n=2 implica 24 divisores,
n=3 implica 36 divisores. Si esta ley es verdadera, para n=4, debería haber 48 divisores.

VEAMOS:

Para n=4, entonces M = (3)(3)x(10)(10)(10)(10) = 90.000
Los divisores de 90.000 son los 36 anteriores, más otros nuevos:
Anteriores divisores:
1 ; 2 ; 3 ; 5 ; 6 ; 9; 10 ; 15 ; 18 ; 30 ; 45 ; 90
20 ; 25 ; 50 ; 60 ; 75 ; 100 ; 150 ; 180 ; 225 ; 300 ; 450 ; 900
200; 250 ; 500 ; 600 ; 750 ; 1.000 ; 1.500 ; 1.800 ; 2.250 ; 3.000 ; 4.500 ; 9.000
Nuevos Divisores:
2.000 ; 2.500 ; 5.000 ; 6.000 ; 7.500 ; 10.000 ; 15.000 ; 18.000 ; 22.500 ; 30.000 ; 45.000 ; 90.000
Es decir, la totalidad de divisores es: 12 + 12 + 12 + 12 = 48.

Finalmente hemos descubierto de que n = 4

No hay comentarios:

Publicar un comentario