jueves, 21 de enero de 2010

Genoma y Ancestros Comunes (Paenza - Episodio 2)


Los “bordes” que supuestamente definen cada ciencia son cada vez más borrosos y el hombre requiere de poder usar todas las herramientas a su alcance, donde las etiquetas poseen cada vez menos sentido. En lugar de decir: “éste es un problema para un físico o para un ingeniero o un arquitecto o un biólogo o un matemático”, uno debería decir: tengo este problema. ¿Cómo lo resolvemos? Pensemos juntos. Como consecuencia, el avance llega solo. O más fácil.

El texto que sigue muestra cómo los vasos comunicantes que generaron biólogos y matemáticos que trabajan en la frontera del conocimiento, permitieron poner en evidencia (una vez más) la existencia de ancestros comunes.

Durante 2005, en una charla que manteníamos en un café de la Facultad de Exactas (UBA) con Alicia Dickenstein (matemática y una de mis mejores amigas, una persona que claramente tuvo una incidencia muy positiva en mi vida), ella me comentó acerca de un trabajo muy interesante que involucró a biólogos y matemáticos. Más precisamente, me contó el resumen del trabajo “The Mathematics of Phylogenomics”, escrito por Lior Pachter y Bernd Sturmfels, del Departamento de Matemática de UC Berkeley. Desde el momento en que, en el 2003, se completó el Proyecto Genoma Humano (HGP, de acuerdo con su sigla en inglés, Human Genome Project), comenzó también la carrera por conocer e identificar a nuestros antepasados, y saber con quiénes compartimos ese “privilegio”. El proyecto, que duró más de trece años, permitió identificar los (aproximadamente) entre 20.000 y 25.000 genes del genoma humano, y determinar las secuencias de los 3.000 millones de pares de bases químicas que lo componen. Es decir, es como si uno tuviera un alfabeto que consista en nada más que cuatro letras: A, T, C y G (las iniciales de A = Adenina, T = Timina, C = Citosina, G = Guanina).

El ADN de una persona es algo así como su cédula de identidad. Ahí está escrita toda la información necesaria para el funcionamiento de sus células y sus órganos. En esencia, en una molécula de ADN está inscripto todo lo que podemos ser, nuestras particulares aptitudes y capacidades, y algunas de las enfermedades que podemos padecer. No obstante, es la combinación de esa información con el aporte del ambiente lo que hace que cada uno de nosotros sea único.
Esa doble hélice es una especie de serpentina que tiene escritas dos tiras enfrentadas de largas cadenas de esas cuatro letras. Pero, además, posee una particularidad: si en una de las tiras, en un lugar hay una letra A, entonces en el lugar correspondiente de la otra tiene que haber una letra T, y si hay una C, entonces en la otra tiene que haber una G. Es decir que vienen apareadas.
(De hecho, una forma de recordar esta particularidad, entre los amantes del tango, es usar las iniciales de Aníbal Troilo y Carlos Gardel.)

Ahora bien, ¿a qué viene todo esto que parece más asociado a un artículo sobre biología molecular que a algo que tenga que ver con la matemática? En el artículo que mencionamos de Lior Pachter y Bernd Sturmfels, y también en el libro Algebraic Statistics for Computational Biology (Cambridge University Press, 2005), los autores estudiaron una situación muy particular.

Miren esta porción de ADN:

TTTAATTGAAAGAAGTTAATTGAATGAAAATGATCAACTAAG

Son 42 letras, en el orden en el que están escritas. Para decirlo de otra manera, sería como una palabra de 42 letras. Esta “tira” del genoma fue encontrada (después de un arduo trabajo matemático y computacional de “alineación” de las distintas secuencias) en algún lugar del ADN de los siguientes vertebrados: hombre, chimpancé, ratón, rata, perro, pollo, rana, peces…

Si uno tirara un dado, que en lugar de tener las seis caras convencionales, tuviera sólo cuatro lados, rotulados A, C, G, T, la probabilidad estimada de que esta secuencia de 42 letras apareciera en ese orden es de 1 dividido por 1050. Es decir, la probabilidad de que esto haya ocurrido por azar es aproximadamente igual a: 10-50 = 0,00000…0001. Para decirlo de otro modo, el número empezaría con un cero, luego de la coma habría cincuenta ceros, y sólo entonces un número uno. Justamente, la probabilidad de que esto ocurra es tan baja que permite a los autores del artículo conjeturar que todos ellos tuvieron un antepasado o un ancestro común (probablemente hace unos quinientos millones de años), que ya poseía esa secuencia de 42 bases, que fue heredada intacta a todos los descendientes de las distintas ramas de vertebrados. Por lo tanto, si bien uno no puede hablar de certeza, la probabilidad de que el hombre tenga el mismo origen que un pollo, o un perro, o un ratón (ni hablar de un chimpancé), es altísima.

No hay comentarios:

Publicar un comentario